Comlinear ${ }^{\circledR}$ CLC1004, CLC1014, CLC3004 Single and Triple, 750 MHz Amplifiers with Disable

FEATURES

- 0.1 dB gain flatness to 200 MHz
- $0.02 \% / 0.01^{\circ}$ differential gain/phase
- 750 MHz -3dB bandwidth at G $=2$
- 350MHz large signal bandwidth
- 1,400V/ s slew rate
- 4nV/V/Hz input voltage noise
- 100mA output current
- 20ns enable time
- Stable for gains of $2 \mathrm{~V} / \mathrm{V}$ or larger
- Fully specified at 5 V and $\pm 5 \mathrm{~V}$ supplies
- CLC1004: Pb-free SOT23-6
- CLC1014: Pb-free SOT23-5
- CLC3004: Pb-free SOIC-16

APPLICATIONS

- RGB video line drivers
- High definition video driver
- Video switchers and routers
- ADC buffer
- Active filters
- Cable drivers
- Imaging applications
- Radar/communication receivers

Ordering Information

General Description

The COMLINEAR CLC1004 (single with disable), CLC1014 (single), and CLC3004 (triple with disable) are high-performance, voltage feedback amplifiers that provide 750 MHz gain of 2 bandwidth, $\pm 0.1 \mathrm{~dB}$ gain flatness to 200 MHz , and $1,400 \mathrm{~V} / \mu$ s slew rate. This high performance exceeds the requirements of high-definition television (HDTV) and other multimedia applications. These COMLINEAR high-performance amplifiers also provide ample output current to drive multiple video loads.

The COMLINEAR CLC1004, CLC1014, and CLC3004 are designed to operate from $\pm 5 \mathrm{~V}$ or +5 V supplies. The CLC1004 and CLC3004 offer a fast enable/ disable feature to save power. While disabled, the outputs are in a highimpedance state to allow for multiplexing applications. The combination of high-speed, low-power, and excellent video performance make these amplifiers well suited for use in many general purpose, high-speed applications including video line driving and imaging applications.

Typical Application - Driving Multiple Video Loads

Part Number	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CLC1004IST6X	SOT23-6	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC1004IST6	SOT23-6	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Rail
CLC1014IST5X	SOT23-5	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC1014IST5	SOT23-5	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Rail
CLC3004ISO16X	SOIC-16	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Reel
CLC3004ISO16	SOIC-16	Yes	Yes	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Rail

Moisture sensitivity level for all parts is MSL-1.

CLC1004 Pin Configuration

CLC3004 Pin Configuration

CLC1004 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	$-V_{S}$	Negative supply
3	+ IN	Positive input
4	- IN	Negative input
5	DIS	Disable pin. Enabled if pin is grounded, left float- ing or pulled below $V_{O N}$, disabled if pin is pulled above $V_{O F F}$
6	$+V_{S}$	Positive supply

CLC3004 Pin Configuration

Pin No.	Pin Name	Description
1	-IN1	Negative input, channel 1
2	+ IN1	Positive input, channel 1
3	- VS	Negative supply
4	- IN2	Negative input, channel 2
5	+ IN2	Positive input, channel 2
6	- VS 2	Negative supply
7	- IN3	Negative input, channel 3
8	+ IN3	Positive input, channel 3
9	$-V_{S}$	Negative supply
10	OUT3	Output, channel 3
11	$+V_{S}$	Positive supply
12	OUT2	Output, channel 2
13	$+V_{S}$	Positive supply
14	DIS	Disable pin. Enabled if pin is grounded, left float- ing or pulled below $V_{\text {ON, }}$, disabled if pin is pulled above VOFF.
15	OUT1	Output, channel 1
16	$+V_{S}$	Positive supply

Disable Pin Truth Table

Pin	High	Low*
DIS	Disabled	Enabled

*Default Open State

CLC1014 Pin Configuration

CLC1014 Pin Assignments

Pin No.	Pin Name	Description
1	OUT	Output
2	$-V_{S}$	Negative supply
3	+ IN	Positive input
4	- IN	Negative input
5	$+V_{S}$	Positive supply

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
Supply Voltage	0	14	V
Input Voltage Range	$-\mathrm{V}_{\mathrm{S}}-0.5 \mathrm{~V}$	$+\mathrm{V}_{\mathrm{S}}+0.5 \mathrm{~V}$	V
Continuous Output Current		100	mA

Reliability Information

Parameter	Min	Typ	Max	Unit
Junction Temperature			150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-65		150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10s)			260	${ }^{\circ} \mathrm{C}$
Package Thermal Resistance		221		${ }^{\circ} \mathrm{C} / \mathrm{W}$
5-Lead SOT23		177	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
6-Lead SOT23	68		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
16-Lead SOIC				

Notes:
Package thermal resistance $\left(\theta_{\mathrm{JA}}\right)$, JDEC standard, multi-layer test boards, still air.
ESD Protection

Product	SOT23-5	SOT23-6	SOIC-16
Human Body Model (HBM)	2 kV	2 kV	2 kV
Charged Device Model (CDM)	1 kV	1 kV	1 kV

Recommended Operating Conditions

Parameter	Min	Typ	Max	Unit
Operating Temperature Range	-40		+85	${ }^{\circ} \mathrm{C}$
Supply Voltage Range	4.5		12	V

Electrical Characteristics at +5 V

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{f}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Frequency Domain Response						
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		600		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{pp}}$		400		MHz
$\mathrm{BW}_{0.1 \mathrm{dBSS}}$	0.1 dB Gain Flatness	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		150		MHz
$\mathrm{BW}_{0.1 \mathrm{dBLS}}$	0.1dB Gain Flatness	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{pp}}$		120		MHz
Time Domain Response						
$t_{\text {R }, ~}, \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step; (10% to 90%)		1.2		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}$ step		10		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step		2		\%
SR	Slew Rate	1 V step		750		V/ $\mu \mathrm{s}$
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp, }} 5 \mathrm{MHz}$		-72		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp, }} 5 \mathrm{MHz}$		-85		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp, }} 5 \mathrm{MHz}$		70		dB
D_{G}	Differential Gain	NTSC (3.58MHz), AC-coupled, $\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.08		\%
D_{p}	Differential Phase	NTSC (3.58MHz), AC-coupled, $\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.04		。
IP3	Third Order Intercept	$\mathrm{V}_{\text {Out }}=1 \mathrm{~V}_{\text {pp, }}, 10 \mathrm{MHz}$		38		dBm
SFDR	Spurious Free Dynamic Range	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 5 \mathrm{MHz}$		63		dBc
e_{n}	Input Voltage Noise	$>1 \mathrm{MHz}$		4		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input Current Noise	$>1 \mathrm{MHz}$		4		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
$\mathrm{X}_{\text {TALK }}$	Crosstalk	Channel-to-channel 5MHz, $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\mathrm{pp}}$		70		dB
DC Performance						
V_{IO}	Input Offset Voltage			0		mV
$\mathrm{dV}_{\text {IO }}$	Average Drift			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current			3.2		$\mu \mathrm{A}$
dI_{b}	Average Drift			20		$n A /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio	DC		56		dB
A_{OL}	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$		65		dB
I_{S}	Supply Current	per channel		11		mA
Disable Characteristics						
$\mathrm{T}_{\text {ON }}$	Turn On Time			20		ns
$\mathrm{T}_{\text {OFF }}$	Turn Off Time			40		ns
OFF $_{\text {IOS }}$	Off Isolation	5 MHz		-78		dB
$V_{\text {OfF }}$	Power Down Input Voltage	DIS pin, disabled if pin is pulled above $\mathrm{V}_{\text {OFF }}=$ $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$	Disabled if $>\left(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}\right)$			V
$\mathrm{V}_{\text {ON }}$	Enable Input Voltage	DIS pin, enabled if pin is grouned, left open, or pulled below $\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{s}}-4 \mathrm{~V}$	Enabled if < ($\left.\mathrm{V}_{\mathrm{s}}-4 \mathrm{~V}\right)$			V
$\mathrm{I}_{\text {SD }}$	Disable Supply Current	CLC1004; DIS pin is pulled to V_{S}		0.4		mA
		CLC3004; DIS pin is pulled to V_{S}		0.4		mA
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		4.5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.0		pF
CMIR	Common Mode Input Range			$\begin{gathered} 1.5 \text { to } \\ 3.5 \end{gathered}$		V
CMRR	Common Mode Rejection Ratio	DC		50		dB

Electrical Characteristics at +5 V continued
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{R}_{f}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{V}_{\mathrm{S}} / 2, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Output Characteristics	Closed Loop, DC					
R_{O}	Output Resistance	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	0.1		Ω	
$\mathrm{~V}_{\text {OUT }}$	Output Voltage Swing		1.5 to 3.5		V	
$\mathrm{I}_{\text {OUT }}$	Output Current		± 100		mA	

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Electrical Characteristics at $\pm 5 \mathrm{~V}$

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, G=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
Frequency Domain Response						
$\mathrm{BW}_{\text {SS }}$	-3dB Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		750		MHz
$\mathrm{BW}_{\text {LS }}$	Large Signal Bandwidth	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		350		MHz
$\mathrm{BW}_{0.1 \mathrm{dBSS}}$	0.1dB Gain Flatness	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{pp}}$		200		MHz
$\mathrm{BW}_{0.1 \mathrm{dBLS}}$	0.1dB Gain Flatness	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		120		MHz
Time Domain Response						
$\mathrm{t}_{\mathrm{R},} \mathrm{t}_{\mathrm{F}}$	Rise and Fall Time	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step; (10% to 90%)		1.3		ns
t_{5}	Settling Time to 0.1\%	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}$ step		10		ns
OS	Overshoot	$\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}$ step		1.5		\%
SR	Slew Rate	2 V step		1400		$\mathrm{V} / \mathrm{\mu s}$
Distortion/Noise Response						
HD2	2nd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp, }} 5 \mathrm{MHz}$		-71		dBc
HD3	3rd Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 5 \mathrm{MHz}$		-82		dBc
THD	Total Harmonic Distortion	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 5 \mathrm{MHz}$		70		dB
D_{G}	Differential Gain	NTSC (3.58MHz), AC-coupled, $\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.02		\%
D_{P}	Differential Phase	NTSC (3.58MHz), AC-coupled, $\mathrm{R}_{\mathrm{L}}=150 \Omega$		0.01		\bigcirc
IP3	Third Order Intercept	$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {pp }}, 10 \mathrm{MHz}$		41		dBm
SFDR	Spurious Free Dynamic Range	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {pp }}, 5 \mathrm{MHz}$		65		dBc
e_{n}	Input Voltage Noise	$>1 \mathrm{MHz}$		4		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Input Current Noise	$>1 \mathrm{MHz}$		4		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
$\mathrm{X}_{\text {TALK }}$	Crosstalk	Channel-to-channel 5MHz, $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{pp}}$		70		dB
DC Performance						
$\mathrm{V}_{\text {IO }}$	Input Offset Voltage ${ }^{(1)}$		-10	0	10	mV
$\mathrm{dV}_{\mathrm{IO}}$	Average Drift			4		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{b}	Input Bias Current ${ }^{(1)}$		-20	3.2	20	$\mu \mathrm{A}$
dI_{b}	Average Drift			20		$n A /{ }^{\circ} \mathrm{C}$
PSRR	Power Supply Rejection Ratio (1)	DC	40	56		dB
$\mathrm{A}_{0 \text { L }}$	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{S}} / 2$		70		dB
I_{S}	Supply Current ${ }^{(1)}$	per channel		12	17	mA
Disable Characteristics						
$\mathrm{T}_{\text {ON }}$	Turn On Time			20		ns
$\mathrm{T}_{\text {OFF }}$	Turn Off Time			40		ns
$\mathrm{OFF}_{\text {IOS }}$	Off Isolation	5MHz		-78		dB
$V_{\text {OFF }}$	Power Down Input Voltage	DIS pin, disabled if pin is pulled above $\mathrm{V}_{\text {OFF }}=$ $V_{s}-1 V$	Disabled if $>\left(\mathrm{V}_{\mathrm{s}}-1 \mathrm{~V}\right)$			V
$\mathrm{V}_{\text {ON }}$	Enable Input Voltage	DIS pin, enabled if pin is grouned, left open, or pulled below $\mathrm{V}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$	Enabled if $<\left(\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}\right)$			V
$\mathrm{I}_{\text {SD }}$	Disable Supply Current ${ }^{(1)}$	CLC1004; DIS pin is pulled to V_{S}		0.4	0.8	mA
		CLC3004; DIS pin is pulled to V_{S}		0.4	0.9	mA
Input Characteristics						
R_{IN}	Input Resistance	Non-inverting		4.5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			1.0		pF
CMIR	Common Mode Input Range			± 3.2		V
CMRR	Common Mode Rejection Ratio ${ }^{(1)}$	DC	40	60		dB

Electrical Characteristics at $\pm 5 \mathrm{~V}$ continued
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Symbol	Parameter	Conditions	Min	Tур	Max	Units
Output Characteristics						
R_{0}	Output Resistance	Closed Loop, DC		0.1		Ω
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega{ }^{(1)}$	± 3.0	± 3.8		V
$\mathrm{I}_{\text {OUT }}$	Output Current			± 220		mA

Notes:

1. 100% tested at $25^{\circ} \mathrm{C}$

Typical Performance Characteristics
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Non-Inverting Frequency Response

Frequency Response vs. C_{L}

Frequency Response vs. Vout

Inverting Frequency Response

Frequency Response vs. R_{L}

Frequency Response vs. Temperature

Typical Performance Characteristics
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Non-Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Frequency Response vs. C_{L} at $V_{S}=5 \mathrm{~V}$

Frequency Response vs. $\mathrm{V}_{\text {OUT }}$ at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Inverting Frequency Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Frequency Response vs. R_{L} at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Frequency Response vs. Temperature at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Typical Performance Characteristics - Continued
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Gain Flatness

-3dB Bandwidth vs. Vout

Closed Loop Output Impedance vs. Frequency

Gain Flatness at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

-3 dB Bandwidth vs. $\mathrm{V}_{\text {OUT }}$ at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Input Voltage Noise

Typical Performance Characteristics - Continued

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

2nd Harmonic Distortion vs. R_{L}

2nd Harmonic Distortion vs. V OUT

CMRR vs. Frequency

3rd Harmonic Distortion vs. R_{L}

3rd Harmonic Distortion vs. VOUT

PSRR vs. Frequency

Typical Performance Characteristics - Continued

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Small Signal Pulse Response

Large Signal Pulse Response

Differential Gain \& Phase AC Coupled Output

Small Signal Pulse Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Large Signal Pulse Response at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$

Differential Gain \& Phase DC Coupled Output

Typical Performance Characteristics - Continued

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{g}}=150 \Omega, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{G}=2$; unless otherwise noted.

Differential Gain \& Phase AC Coupled Output at $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

Differential Gain \& Phase DC Coupled at $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$

Application Information

Basic Operation

Figures 1 and 2 illustrate typical circuit configurations for non-inverting, inverting, and unity gain topologies for dual supply applications. They show the recommended bypass capacitor values and overall closed loop gain equations.

Figure 1. Typical Non-Inverting Gain Circuit

Figure 2. Typical Inverting Gain Circuit

Power Dissipation

Power dissipation should not be a factor when operating under the stated 1000 ohm load condition. However, applications with low impedance, DC coupled loads should be analyzed to ensure that maximum allowed junction temperature is not exceeded. Guidelines listed below can be used to verify that the particular application will not cause the device to operate beyond it's intended operating range.
Maximum power levels are set by the absolute maximum junction rating of $150^{\circ} \mathrm{C}$. To calculate the junction tem-
perature, the package thermal resistance value Theta ${ }_{\mathrm{JA}}$ $\left(\Theta_{\mathrm{JA}}\right)$ is used along with the total die power dissipation.
$T_{\text {Junction }}=T_{\text {Ambient }}+\left(\Theta_{\mathrm{JA}} \times \mathrm{P}_{\mathrm{D}}\right)$
Where $T_{\text {Ambient }}$ is the temperature of the working environment.
In order to determine P_{D}, the power dissipated in the load needs to be subtracted from the total power delivered by the supplies.
$P_{D}=P_{\text {supply }}-P_{\text {load }}$
Supply power is calculated by the standard power equation.
$\mathrm{P}_{\text {supply }}=\mathrm{V}_{\text {supply }} \times \mathrm{I}_{\text {RMS supply }}$
$\mathrm{V}_{\text {supply }}=\mathrm{V}_{\mathrm{S}+}-\mathrm{V}_{\mathrm{S}-}$
Power delivered to a purely resistive load is:
$\mathrm{P}_{\text {load }}=\left(\left(\mathrm{V}_{\text {LOAD }}\right)_{\mathrm{RMS}^{2}}\right) /$ Rload $_{\text {eff }}$
The effective load resistor (Rload ${ }_{\text {eff }}$) will need to include the effect of the feedback network. For instance,

Rload $_{\text {eff }}$ in figure 3 would be calculated as:
$R_{L} \|\left(R_{f}+R_{g}\right)$
These measurements are basic and are relatively easy to perform with standard lab equipment. For design purposes however, prior knowledge of actual signal levels and load impedance is needed to determine the dissipated power. Here, P_{D} can be found from
$P_{D}=P_{\text {Quiescent }}+P_{\text {Dynamic }}-P_{\text {Load }}$
Quiescent power can be derived from the specified IS values along with known supply voltage, $\mathrm{V}_{\text {Supply. }}$ Load power can be calculated as above with the desired signal amplitudes using:
$\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }}=\mathrm{V}_{\text {PEAK }} / \sqrt{ } 2$
$\left(\mathrm{I}_{\text {LOAD }}\right)_{\text {RMS }}=\left(\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }} /$ Rload $_{\text {eff }}$
The dynamic power is focused primarily within the output stage driving the load. This value can be calculated as:
$P_{\text {DYNAMIC }}=\left(\mathrm{V}_{\text {S+ }}-\mathrm{V}_{\text {LOAD }}\right)_{\text {RMS }} \times\left(\mathrm{I}_{\text {LOAD }}\right)_{\text {RMS }}$
Assuming the load is referenced in the middle of the power rails or $\mathrm{V}_{\text {supply }} / 2$.
Figure 3 shows the maximum safe power dissipation in the package vs. the ambient temperature for the packages available.

Figure 3. Maximum Power Derating

Driving Capacitive Loads

Increased phase delay at the output due to capacitive loading can cause ringing, peaking in the frequency response, and possible unstable behavior. Use a series resistance, R_{s}, between the amplifier and the load to help improve stability and settling performance. Refer to Figure 4.

Figure 4. Addition of R_{S} for Driving Capacitive Loads
Table 1 provides the recommended R_{S} for various capacitive loads. The recommended R_{S} values result in $<=1 \mathrm{~dB}$ peaking in the frequency response. The Frequency Response vs. C_{L} plots, on page 7, illustrates the response of the CLCx004.

$\mathrm{C}_{\mathrm{L}}(\mathrm{pF})$	$\mathrm{R}_{\mathrm{S}}(\Omega)$	-3 dB BW (MHz)
20	20	400
50	15	270
100	10	195
500	5	80
1000	3.3	58

Table 1: Recommended R_{S} vs. C_{L}
For a given load capacitance, adjust R_{S} to optimize the tradeoff between settling time and bandwidth. In general,
reducing R_{S} will increase bandwidth at the expense of additional overshoot and ringing.

Overdrive Recovery

An overdrive condition is defined as the point when either one of the inputs or the output exceed their specified voltage range. Overdrive recovery is the time needed for the amplifier to return to its normal or linear operating point. The recovery time varies, based on whether the input or output is overdriven and by how much the range is exceeded. The CLCx004 will typically recover in less than 20 ns from an overdrive condition. Figure 5 shows the CLC1004 in an overdriven condition.

Figure 5. Overdrive Recovery

Layout Considerations

General layout and supply bypassing play major roles in high frequency performance. CADEKA has evaluation boards to use as a guide for high frequency layout and as aid in device testing and characterization. Follow the steps below as a basis for high frequency layout:

- Include $6.8 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$ ceramic capacitors for power supply decoupling
- Place the $6.84 F$ capacitor within 0.75 inches of the power pin
- Place the $0.1 \mu \mathrm{~F}$ capacitor within 0.1 inches of the power pin
- Remove the ground plane under and around the part, especially near the input and output pins to reduce parasitic capacitance
- Minimize all trace lengths to reduce series inductances Refer to the evaluation board layouts below for more information.

Evaluation Board Information

The following evaluation boards are available to aid in the testing and layout of these devices:

Evaluation Board	Products
CEB002	CLC1004, CLC1014
CEB012	CLC3004

Evaluation Board Schematics

Evaluation board schematics and layouts are shown in Figures 9-14. These evaluation boards are built for dual- supply operation. Follow these steps to use the board in a single-supply application:

1. Short -Vs to ground.
2. Use C 3 and C 4 , if the $-\mathrm{V}_{\mathrm{S}}$ pin of the amplifier is not directly connected to the ground plane.

Figure 9. CEBOO2 Schematic

Figure 10. CEB002 Top View

Figure 11. CEB002 Bottom View

Figure 12. CEB012 Schematic

Figure 13. CEB012 Top View

Figure 14. CEB012 Bottom View

Mechanical Dimensions

SOT23-5 Package

SOT23-6 Package

NOTES:

1. Dimensions and tolerances are as per ANSI Y14.5M-1982.
2. Package surface to be matte finish VDI $11 \sim 13$.
3. Die is facing up for mold. Die is facing down for trim/form, ie. reverse trim/form.
4. The footlength measuring is based on the guage plane method.

A Dimension are exclusive of mold flash and gate burr.
Dimension are exclusive of solder plating.

Mechanical Dimensions

SOIC-16 Package

